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I:  Introduction 
 
 Neuroeconomics seeks to ground microeconomic theory in details about how the 
brain works (see Zak, 2004; Camerer, Loewenstein and Prelec, 2005; Chorvat and 
McCabe, 2005; and Sanfey et al, 2006). Neuroeconomics is a subfield of behavioral 
economics (behavioral economics uses empirical evidence of limits on computation, 
willpower and greed to inspire new theories; see Mullainathan and Thaler, 2000; 
Camerer, 2005). It is also a subfield of experimental economics because neuroeconomics 
requires mastery of difficult experimental tools which are new to economists (discussed 
in further detail in section II below). And to many neuroscientists, the greatest promise of 
neuroeconomics is to supply theories and experimental designs for neuroscience. These 
neuroscientists feel that the kinds of models and tasks economists use routinely can 
contribute to “systems neuroscience” understanding of higher-order cognition, which are 
challenging for neuroscientists who are used to focusing on very fine details of 
neurobiology and specific brain areas.  
 
 To modern economists, the neuroeconomic approach seems to be a sharp turn in 
economic thought. Around the turn of the century, neoclassical economists made a clear 
methodological choice, to treat the mind as a black box and ignore its details for the 
purpose of economic theory (Bruni and Sugden, 2005). In an 1897 letter Pareto wrote 
  
 It is an empirical fact that the natural sciences have progressed only when they 
 have taken secondary principles as their point of departure, instead of trying to 
 discover the essence of things.  ...  Pure political economy has therefore a great 
 interest in relying as little as possible on the domain of psychology (quoted in 
 Busino, 1964, p. xxiv). 
 
 Pareto's view that psychology should be deliberately ignored was partly reflective 
of a pessimism of his time, about the ability to ever understand the brain well enough to 
use neural detail as a basis for individual economizing. (This pessimism was also 
manifested in the behaviorist psychology of Watson and Skinner, who turned attention 
away from the “mentalism” of their time to stimulus-response relations and 
conditioning.) 
 
 As William Jevons wrote a little earlier, in “Theory of Political Economy” 
  
 I hesitate to say that men will ever have the means of measuring directly 
 the feelings of the human heart.  It is from the quantitative effects of 
 the feelings that we must estimate their comparative amounts (Jevons, 1871). 
 
 This turn-of-the-century pessimism about understanding the brain led directly to 
the rise of  “as if” rational choice models in neoclassical economics. Models of this sort 
posit individual behavior which is consistent with logical principles, but do not put any 
evidentiary weight on direct tests of whether those principles are followed. For example, 
if a consumer’s choices are transitive and complete, then she acts as if she attaches 
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numerical utilities to bundles of goods and choose the bundle with the highest utility, but 
direct measurement of utility is thought to be irrelevant as a test of the theory.  
 
 The ignorance of psychology that Pareto explicitly advocated was cemented by 
Milton Friedman’s (1953) development of “positive economics”. Friedman, and the many 
economists influenced by his view, advocated two separate principles for judging theories 
which use assumptions A to make a formal prediction P: 
 

1. Assumptions A should be judged by the accuracy of the predictions P they 
mathematically imply.  

2. Since false assumptions can yield accurate predictions, even if assumptions 
appear false their empirical weakness should be tolerated if they lead to 
accurate predictions P.  

 
 I wholeheartedly endorse the first principle (1), but not the corollary principle (2).  
 
 Here’s why: First, if assumptions A are false but lead to an accurate prediction, 
they presumably do so because of a hidden “repair” condition R (that is, (not-A and R)  
P is a more complete theory at both ends than A  P). Then the proper focus of 
progressive research should be specifying the repair assumption R and exploring its 
implications, in conjunction with more accurate assumptions.  
 
 Second, the importance of making good predictions (1) is precisely the reason to 
explore alternative assumptions grounded in psychological and neuroscientific facts. The 
hope is that models based on those alternative assumptions will explain anomalies and 
make interesting new predictions.  
 
 As-if models based on dubious assumptions work well in many respects, and 
always will (just as expected value is still a useful tool for some kinds of analysis, even 
though it is a severe restriction of expected utility). But tests of the predictions that follow 
from as-if rational choice have also established many empirical anomalies. Behavioral 
economics describes these regularities and suggests formal models to explain them (e.g. 
Camerer, 2005).  
 
 Debates between rational-choice and behavioral models usually revolve around 
psychological constructs, such as loss-aversion (Kahneman and Tversky, 1979), the role 
of learning and limited strategic thinking, a preference for immediate rewards, and 
precise preferences over social allocations, which have not been observed directly. But 
technology now allows us to open the black box of the mind and observe brain activity 
directly. These direct observations can only enhance the development of theories which 
are based on more accurate assumptions and make better predictions as a result.    
 
 An analogy to organizational economics illustrates the potential of 
neuroeconomics (see also Sanfey et al, 2006). Until the 1970's, the ``theory of the firm" 
was basically a reduced-form model of how capital and labor are combined to create a 
production function. The idea that a firm just combines labor and capital is obviously a 
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gross simplification— it neglects the details of principal-agent relations, gift exchange 
and efficiency wages, social networks and favor exchange in firms, substitution of 
authority for pricing, corporate culture, and so forth. But the gross simplification is 
useful, for the purpose of building up an industry supply curve. 
 
 Later, contract theory opened up the black-box of the firm and modeled the details 
of the nexus of contracts between shareholders, workers and managers. The new theory 
of the firm replaces the (perennially useful) fiction of a profit-maximizing firm which has 
a single goal, with a more detailed account of how components of the firm— individuals, 
hierarchies, and networks-- interact and communicate to determine firm behavior.  
 
 Neuroeconomics proposes to do the same by treating an individual economic 
agent like a firm. The last sentence in the previous paragraph can be exactly rewritten to 
replace firms and the components of firms with individuals and neural components of 
individuals. Rewriting that sentence gives this one:  The neuroeconomic theory of the 
individual replaces the (perennially useful) fiction of a utility-maximizing individual 
which has a single goal, with a more detailed account of how components of the 
individual— brain regions, cognitive control, and neural circuits-- interact and 
communicate to determine individual behavior. 
 
 The rapid emergence of various dual-self or dual-process approaches testifies to 
how well economic theory can be adapted to study the brain as an organization of 
interacting components. Fudenberg and Levine (2005) emphasize the struggle between a 
long-run player and a short-run player, adapted from game-theoretic models (see also 
Thaler and Shefrin’s prescient, 1988, “planner-doer” model1). Benhabib and Bisin (2005) 
emphasize the constraint that controlled “executive” processes put on automatic 
processes. Bernheim and Rangel (2005) emphasize “hot” impulsive states (akin to 
automatic process, but perhaps driven by visceral factors like drug craving or hunger) and 
“cold” states. Loewenstein and O’Donoghue (2004) emphasize deliberate processes and 
affective ones. Brocas and Castillo (2005) emphasize how a cortical control process 
constrains an emotional process which may be asymmetrically informed. So far, there is 
little direct neural evidence testing these various models and comparing them. Doing so is 
an obvious immediate direction for research (and will contribute to basic neuroscience as 
well).  
 It is important to note that the focus of neuroeconomic research so far is largely 
on microeconomics foundations of consumer choice, valuing risky gambles, and strategic 
thinking. It remains to be seen whether neural measurement will be useful for 
understanding macroeconomic phenomena like consumer confidence or stock market 
bubbles. However, many of these macro phenomena might spring from the interaction of 
many brains that are tightly linked through social networks and common responses to 
emotional and news shocks which can be reciprocal or contagious. If so, macro models 
could explore how the result of brain activity has a multiplier effect in the economy.   
 

                                                 
1 Benabou and Pyciak (2002) show how the Gul-Pesendorfer (2001) model of preferences under temptation 
is mathematically equivalent to a rent-seeking competition between two brain areas, linking the preferential 
approach to the multiple-selves approach.  
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II. Neuroscientific facts and tools 
 
 A. Facts 
  Some basic facts about the human brain are useful economists to know, to 
understand the evidence presented below and to provide constraint on theorizing.  
 
 The brain is weakly modular, in the sense that not every brain area contributes to 
every behavior. (That is, the early phrenologists were on the right track, but had too crude 
a concept of how localized complex behaviors or traits like “virtue” and “sloth” were.) 
While the brain is modular, it is also “plastic”— responsive to environment as brain 
‘software’ is gradually ‘installed’. Plasticity is most obvious in childhood development 
but seems to continue well into adolescence. Plasticity is the reason why neuroscientists 
usually bristle at the term “hard-wired”, which economists often use casually.  
 
 While neuroscientists often focus on specific brain areas which are cyto-
architecturally distinct (i.e., they have distinct tissue, neurons, and neurotransmitters), for 
tasks economists are interested in the proper focus is “circuits” of multiple brain areas. 
The importance of circuitry also implies that the right kinds of models are computational 
ones in which well-understood components collaborate to create behavior.  
 
  Attention and consciousness are scarce, and the brain is evolved to off-load 
decisions by automating activity through learning. Automaticity means that people are 
capable of creating tremendous expertise which relies on subconscious intuition and 
pattern recognition. It also means that overcoming automated behavior takes scarce 
conscious effort and is often a source of mistakes in “Stroop tasks”.2

 
 The human brain is basically the primate brain with extra neocortex; and the 
primate brain is a simpler mammalian brain with some neocortex. This evolutionary 
history is the main reason why experiments with animals are so informative about human 
behavior. (To think otherwise is economic creationism.) For example, rats become 
biologically addicted to all substances that humans become addicted to (nicotine, opiates, 
alcohol, etc.). Our shared evolutionary past, and inherited brain regions, do not imply that 
humans always behave like monkeys (though we sometimes do). Our shared past just 
implies that when humans struggle to control animal impulses (such as drug addiction), 
the struggle is between the neocortex and older temporal-lobe areas. Knowing which 
areas are involved in the struggle is useful for crafting theory and for prescribing 
treatments.  
                                                 
2 In the classic Stroop task, people are asked to name the color of ink a word is printed in. Under time 
pressure, people invariably state the word rather than the color (e.g., if the word “black” is printed in green 
ink, they say “black”, not “green”) at first, though they can learn over time. The Stroop task is now used as 
a generic term for any automated response which must be overridden by cognitive control. The game 
“Simon says” is an example. Another example is when Americans visit England. Americans are used to 
looking to the left for cars approach them was they cross the street, but in England cars approach from the 
right. Many Americans are killed every year because of a Stroop mistake. The fact that avoiding a Stroop 
mistake takes conscious effort also predicts that Americans whose conscious attention is absorbed 
elsewhere when they are crossing the street in England— talking on a cellphone, for example— are more 
likely to be killed than those who are not distracted.  
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 B. Tools 
 
 Much of the potential of neuroeconomics comes from relatively recent 
improvements in technology for measuring brain activity (particularly fMRI), and in 
matching older technologies (such as eyetracking and EEG) with new tasks.  
 
 fMRI uses magnetic resonance imaging, popular for decades for medical 
diagnosis, at rapid frequencies to measure oxygenated blood flow in the brain  
(which is correlated with neural input). The spatial resolution of fMRI is about 3 cubic 
millimeter voxels and its temporal resolution is 2 seconds. Stronger magnetic fields are 
unlikely to provide much more improvement (and may post health risks, which modern 
3-tesla magnets do not); but improvement may come from innovation in experimental 
design and statistics.  
 
 Positron Emission Tomography (PET) is an earlier scanning technology which 
injects radioactive solution (usually glucose with a radioactive marker). PET temporal 
resolution is worse than fMRI (minutes rather than seconds) but glucose is a more direct 
correlate of neural activity than blood flow.   
 
 fMRI and PET are good for roughly identifying areas that are active in a task. 
Once candidate circuits are established, it is useful to ask whether behavior is changed 
when parts of the circuit are broken or disrupted.  
 
 Studies of patients with brain lesions are useful for testing hypotheses from fMRI. 
If a patient with damage to area X cannot perform a task T normally, then area X is part 
of a normal circuit for doing T. (Lesion data are reported below in a study of the Ellsberg 
paradox in ambiguous choice.) Transcranial magnetic stimulation (TMS) can “knock out” 
or activate brain areas, and hence is useful for knowing what targeted areas do. The 
animal model is also useful because invasive surgeries and genetic engineering can be 
done with animals, as a substitute for exogeneous lesions and correlational studies  in 
humans.  
 
 A much more detailed level of data comes from recording activity of a single 
neuron at a time, mostly from primates (and rarely, from human neurosurgical patients in 
whom electrodes have been planted to detect locations of epileptic seizures to locate 
surgical targets).  
 
 Older tools continue to be useful. The electroencephalogram (EEG) records very 
rapid (millisecond) electrical activity from outer brain areas, and can sometimes be used 
to interpolate activity in areas deeper in the brain. Psychophysiological recording (or skin 
conductance, heart rate and pupil dilation, for example) are cheap and easy too. Tracking 
where people are looking on a screen (eyetracking) is also very easy and useful for many 
questions economists ask. Directly observing the information people use to make 
decisions provides a second dependent variable that can be used, in conjunction with 
observed choices, to identify decision rules better than choices alone can.  
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 A great strength of neuroscience is that investigators who have mastered these 
tools compete fiercely (for grants, students, and space in Science and Nature); their fierce 
competition creates a bonus for methodological innovation and weeds out weak results. 
The tools are also complements because each tool can compensate for the weaknesses of 
others (e.g., having an fMRI finding makes data from patients with lesions in the areas 
identified by fMRI especially valuable). Recognizing this complementarity, 
neuroscientists are most comfortable with ideas that are consistent with many types of 
data recorded in different ways at different levels of temporal and spatial resolution. 
Happily for economists, many of our simplest questions can be illuminated by the simple 
measures (e.g., eye tracking and psychophysiological recording). Ambitious graduate 
students interested in this field are well advised to pick one tool that can help answer the 
questions they are interested in, and master it.  
 
 Neuroeconomics is likely to provides three types of evidence about economic 
behavior. Examples of each type of evidence are given in the next three sections of this 
paper.3 The three kinds of evidence are:  
 

1. Evidence which show mechanisms that implement rational choice (utility-
maximization and Bayesian integration of information), typically in tasks that 
are highly-sculpted to make decisions that are useful for survival across 
species (vision, food, sex and safety).  

2. Evidence which support the kinds of variables and parameters introduced in 
behavioral economics.  

3. Evidence which suggest the influence of “new” variables that are implicit, 
underweighed, or missing in rational-choice theory.  

 
III.  Evidence for rational choice principles 
 

In many simple choice domains, evolution has had a long time to sculpt pan-
species mechanisms that are crucial for survival (food, sex, and safety). In these domains, 
evolution has either created neural circuits which approximate Bayesian-rational choice, 
or learning mechanisms that generate Bayesian-rational choice with sufficient experience 
in a stationary environment, putting to use highly-developed capacities for sensory 
evaluation (vision, taste, smell), memory, and social imitation.  

 
For example, Glimcher and Platt (1999) find remarkable neurons in monkey 

lateral intraparietal cortex (LIP) which fire at a rate that is almost perfectly correlated 
with the expected value of an upcoming juice reward, triggered by a monkey eye 
movement (saccade) (see also Bayer and Glimcher, 2005). Deaner, Khera, and Platt 
(2005) find that monkeys can reliably trade off  juice rewards with exposure to visual 
images (including images of females from behind, and faces of high and low status 
conspecific monkeys). Monkeys can also learn to approximate mixed-strategies in games 
                                                 
3 Note that the length of the three sections is not intended to reflect either the accumulated regularity in 
each of the three areas, or likely future results. The last section is longer because it presents a more novel 
perspective, and most directly meets the critique that neuroeconomics does not provide new insight. 
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(Glimcher, Dorris, and Bayer, 2005), probably using generalized reinforcement 
algorithms (Lee et al., 2004). Neuroscientists are also finding prefrontal neurons that 
appear to express values of choices (Padoa-Schioppa and Assad, 2006) and potential 
locations of “neural currency” that creates tradeoffs (Shizgal, 1997). Following a long 
tradition in “animal economics” (Battalio, Green and Kagel book), 

Chen, Lakshminarayanan, and Santos (2006) show that capuchin monkeys 
respond to price changes, obeying the GARP axiom, when exchanging tokens for 
different food rewards.  

 
Another literature shows that Bayesian models are accurate approximations of 

how different kinds of sensory information are integrated (Stocker and Simoncelli, 2006). 
These data are in sharp contrast with many cognitive psychology experiments showing 
that Bayesian principles are violated when intelligent humans evaluate abstract events 
(e.g., Kahneman, 2003). It is difficult to reconcile these two literatures directly, because it 
is difficult to create tasks in which monkeys have to judge the kind of abstract questions 
people are asked—like whether basketball players have a “hot hand” or whether 
representative conjunctions of events (F & B) are more likely than their component 
events (F and B judged separately). Common paradigms that can be used across species 
represent a huge challenge that would be very useful for either reconciling the results or 
establishing why they differ.  
 
IV.  Evidence for behavioral economics principles 
 
 This section discusses four areas in which neuroscience has established some 
tentative neural foundation for ideas from behavioral economics which were derived 
earlier from experiments and field data. The four areas are: β-δ time discounting; 
aversion to missing information about probability (ambiguity); nonlinear weighting of 
probability; and limited strategic thinking in games. 
 Time discounting: Extensive experiments with animals, and later with humans, 
established that the discount factor put on future rewards is closer to a hyperbola, 
1/(1+kt), than an exponentially-declining discount factor δt. Laibson (1997) borrowed a 
two-piece discounting function introduced to explain parental bequests, to model “quasi-
hyperbolic” discounting. In the β-δ model, agents put a weight of one on current rewards, 
and weight future rewards at discrete time t>0 by βδt. (When β=1 the two-parameter 
function reduces to an exponential.) Rabin and O’Donoghue (1999) dubbed the β term a 
“present bias” and explore its implications. Various field and experimental data suggest 
values of β around .6-.8.4 To search for β and δ processes in the brain, McClure et al 
(2004) presented subjects with choices between a current reward and a reward with a 
one-month delay (which activates both β and δ systems), and other choices with a one-
month or two-month delay (in which the β component divides out). They find activity in 
areas often associated with an emotional limbic system (medial frontal cortex, cingulate, 
and ventral striatum) when β comes into play, and find distinct activity in lateral 
                                                 
4 Angeletos et al (2001), Paserman and Della Vigna (2005), Tanaka, Nguyen and Camerer (2006, 
http://www.hss.caltech.edu/~camerer/Growth-nth.pdf) and Brown, Camerer and Chua (2006) all report 
estimates from savings data, unemployment data, abstract experiments in Vietnam, and dynamic savings 
rewards with temptation (respectively) with β around .6-.8. 
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orbitofrontal cortex and dorsolateral cortex linked to the δ system. Their study is hardly 
the last word—in fact, it’s the first word— but is consistent with discounting being a 
splice of two processes. 
 Ambiguity-aversion: In subjective expected utility theory, the willingness to take 
bets on events is taken to reveal subjective probabilities of those events. The Ellsberg 
paradox showed that for a small majority of subjects, when two events are equally likely 
but poorly understood (or “ambiguous”), revealed decision weights seem to combine 
judgment of likelihood and an additional factor which leads to an aversion to betting 
under ambiguity. Theories of nonadditive probability and set-valued probabilities loosely 
ascribe this ambiguity-aversion to pessimism or fear of betting in the face of unknown 
information. Ambiguity-aversion has been implicated in “home bias” in financial 
investment (a preference for investing in stocks in one’s own country, or firm, or firms 
nearby), in “robust control” in macroeconomics, and in other economic domains 
(Camerer, Hsu and Bhatt, in press). Scottish law provides a useful practical example. In 
Scottish law there are three verdicts—guilty, not guilty, and “unproven”. An unproven 
verdict results when there is too little evidence to determine guilt or innocence (often in 
sexual assault cases, since Scottish law requires a corroborating witness besides a 
testifying victim). Unproven verdicts are usually the jury’s way of expressing an aversion 
to rendering either verdict, often shaming a victim they believe is guilty but cannot 
legally find guilty because of evidentiary rules which create reasonable doubt . 
 Since decision theorists forming axioms are not generally thinking about brain 
activity adhering to those axioms, it is difficult to find descriptions which are suggestive 
of neural activity. But Raiffa (1963) wrote: 
   
 But if certain uncertainties in the problem were in cloudy or fuzzy    
 [ambiguous] form, then very often there was a shifting of gears and no   
 effort at all was made to think deliberately and 
   reflectively about the problem.  Systematic decomposition of 
  the problem was shunned and an over-all 'seat of the pants' 
 judgment was made which graphically reflected the temperament  of the   
 decision maker. 
  
 Unfortunately, the “seat of the pants” is not a brain area, but Raiffa’s description 
does a rapid emotional response in the face of ambiguity. Hsu et al (2005) investigated 
ambiguity and risk using fMRI (see also Huettel et al, 2006). They found additional 
activation in valuing bets on ambiguous gambles relative to risky ones (such as bets on 
low-knowledge events, like the temperature in Tajikistan compared to high-knowledge 
New York). They found additional activity in the dorsolateral prefrontal area, 
orbitofrontal cortex (above the eye sockets, OFC) and the amygdala (a “vigilance” area, 
which is rapidly activated in 5-20 msecs by fearful images, even before they are 
consciously processed). Subjects with higher right OFC activity in response to ambiguity 
also had higher ambiguity-aversion parameters as estimated by a stochastic choice logit 
model fit to gamble valuations. 
 Nonlinear probability weighting: In expected utility (EU) theory, the utilities of 
gamble outcomes are weighted by their probability p. But many experimental studies 
suggest that people actually weight probabilities nonlinearly with a function π(p), 
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overweighting low probabilities and underweighting probabilities close to one (the 
“certainty effect”); see Figure 1 (from Prelec, 1998). Overweighting of low p could be 
important in pricing insurance and in explaining demand for lottery tickets and the high 
failure rate of new businesses.  
 Measuring neural activation in response to variation in probability is made 
possible by the fact that a fair amount is known about how the caudate (a temporal lobe 
area including the striatum) responds to anticipated reward. Hsu, Zhao and Camerer (in 
preparation) set out to see whether activation in the striatum responded nonlinearly to 
probability of winning. They first presented simple binary gambles (p,X) which have a p 
chance of paying $X (otherwise they pay zero) for a few seconds, then had subjects 
choose between the presented gamble and a second gamble (roughly matched for 
expected value). The choice data enable estimation of parameters of a probability 
weighting function π(p). They look at activity in the left and right caudate areas—an area 
in the temporal lobe associated with rewards of many types (juice, cocaine, attractive 
faces, money, faces of people who have cooperated with you). Controlling for the payoff 
amount X, there is a modest nonlinearity of activity across levels of probability p which 
is reasonably similar to the nonlinear functions shown in Figure 1. This similarity of 
indirect estimates and direct estimates of caudate activity is not conclusive proof that the 
brain is weighing probabilities nonlinearly, but it is consistent with that hypothesis. A 
likely explanation is that probability estimation is a combination of a linear weighting 
and an inverse-S step function which sorts probabilities crudely into “no, maybe, yes”.5 
Combining the two gives a regressive function that overweights low p and underweights 
high p, and is consistent with the brain activation.  
 Limited strategic thinking: In game theory, players are in equilibrium when they 
guess correctly what other players will do— that is, when their beliefs about other 
players’ strategies match the actual strategies others choose. Camerer, Ho and Chong 
(2004) describe an alternative “cognitive hierarchy” (CH) theory in which players use 
various steps of strategic thinking. Some step-0 players randomize, other step-1 players 
anticipate randomization and best-respond to it, step-2 players best-respond to a mixture 
of step-0 and step-1 players, and so on. Since the highest-step players anticipate correctly 
the distribution of what other players will do, their beliefs are in equilibrium, but the 
beliefs of lower-step thinkers are not in equilibrium because they do not guess correctly 
what higher-step players will do. This model (and earlier versions introduced by others) 
fits empirical data from dozens of game experiments with many different structural forms 
(mixed-equilibria, coordination, dominance-solvable games, and so forth). To look for 
evidence of limited strategic thinking in the brain, Bhatt and Camerer (2005) did fMRI of 
players when they made choices, and when they expressed beliefs about what other 
players would do. They found that when players’ choices and beliefs were in equilibrium, 
there was almost perfect overlap in brain activity during choosing and belief 
expression—that is, creating equilibrium beliefs requires players to imagine how others 
are choosing, which uses overlapping neural circuitry with making your own choice 
(Figure 2). When players were out of equilibrium, there was much more activity when 

                                                 
5 Attention and adaptation probably also play crucial roles. While some risks are overweighted, others 
might be dismissed entirely because they are not imagined or attended to. There is no experimental 
paradigm to turn on and off attention to low probability risks; having one would be useful, as would field 
measurements of actual attention to risks.  
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making a choice than when expressing a belief (as would be expected from 0- and 1-step 
thinkers, who are thinking harder about their own choice than they are about choices of 
other players). Thus, being in equilibrium is not merely a mathematical restriction on 
equality of choices and beliefs, it is also a “state of mind” identifiable by brain imaging.  

  
V: Evidence for new psychological variables 
 
 My view is that the largest payoff from neuroeconomics will not come from 
finding rational-choice processes in the brain for complex economic decisions, or from 
supporting ideas in behavioral economics derived from experimental and field data (as 
shown by examples in the last two sections). The largest innovation may come from 
pointing to biological variables which have a large influence on behavior and are 
underweighted or ignored in standard theory. This section lists a few speculative 
examples. They suggest that the concept of a preference is not a primitive (as Pareto 
suggested); preferences are both the output of a neural choice process, and an input which 
can be used in economic theory to study responses to changes in prices and wealth. This 
view implies that if we understand what variables affect preferences, we can shift 
preferences and shift behavior (without changing prices or constraints). Whether this can 
be done reliably or on a large scale is not yet known. The goal at this point is just to show 
that understanding biology and the brain can make fresh predictions about observed 
choices. At this point, there are few such predictions and they focus on small effects at 
the individual level. But given the youth of the field, having any such examples is 
suggestive and they point in interesting directions.  
 

1. In the ambiguity study described in the last section (Hsu et al., 05), there is a 
modest correlation of right OFC activity with a parameter characterizing the 
degree of ambiguity-aversion, which is derived from estimation using choices. 
(The parameter γ is derived implicitly from the weight (E(p)γ) given to an event 
with expected or diffuse-prior probability p. The value γ=1 is ambiguity-
neutrality. A value γ>1 corresponds to ambiguity-aversion; an ambiguity-averse 
person acts like the decision weight on an ambiguous event is lower than its 
expected probability.) One can extrapolate statistically from the correlation 
between OFC activation and γ in normal subjects to infer the behavioral value of γ 
that would be revealed by choices of a person with no OFC activity at all—due to 
a lesion in that area, say (see Figure 3). The extrapolated estimate is γ=.85 
(roughly ambiguity-neutral, given sampling error). In fact, Hsu et al also tested 
Ellsberg-type problems on patients with OFC damage subsuming the areas 
observed in fMRI. Those patients’ choices exhibited a value of γ=.82. I would 
love to say this value was truly predicted before the fact, but it was not (both 
studies were conducted in parallel). In any case, there is a close link between the 
behavioral parameter “predicted” by extrapolating from the fMRI evidence to 
patients with no activity, and the extrapolated parameter is close to the figure 
revealed by choices. While this correspondence could be construed as consistent 
with axiomatic theories of ambiguity-aversion, no theory would have predicted it 
without the fMRI evidence to tell us what lesion patients would be roughly  
ambiguity-neutral.  
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2. Wang, Spezio and Camerer (2006) studied experimentally a classic “biased-

transmission game” that has been widely used in economics and political science. 
In this game, a sender observes a state S, an integer from 1 to 5 (uniformly 
distributed). The sender then chooses an integer message M from 1 to 5. A 
receiver knows the setup of the game, and learns the message, but does not know 
the true state directly. The receiver then chooses an action A from 1 to 5. (The 
game is like security analysts who know more about the value of a stock than you 
do, make a recommendation, and want you to act as if the stock is more valuable 
than it is, because of career concerns or other collateral interests.) In the 
interesting conditions, the senders earn the most if the receiver chooses S+b, 
where b is a known bias parameter (either 1 or 2). We try to predict the true state 
from the sender’s message M, and from their pupil dilation (expansion of pupils) 
when they send their message. Pupils dilate under arousal, stress, and deception 
(that’s why poker players wear sunglasses if they are allowed to). Statistical tests 
show that measuring the pupil dilation improves substantially in predicting what 
the true state is. Thus, a biological variable helps infer private information which 
is conveyed by messages, in a way that is not explicitly predicted by conventional 
game theory. 

 
3. Sanfey et al. (2003) used fMRI to see what areas were differentially active in the 

brains of responders in an ultimatum game, when the responders received a fair 
offer ($4-5 out of $10) compared to an unfair offer ($1-2). They found activation 
in the insula (a discomfort or disgust area, perhaps measuring the emotional 
reaction to getting a low offer), dorsolateral prefrontal cortex (DLPFC, a planning 
and evaluation area), and anterior cingulate (a conflict-resolution area). They also 
found that whether people rejected low offers or not could be predicted with some 
accuracy from whether the insula was more actived than DLPFC or vice versa. 
Building on this study, Wout et al (2005) used TMS to stimulate the DLPFC 
when people received offers. Based on the fMRI evidence, they hypothesized that 
if the DLPFC was stimulated, people would think more about the money, and 
would accept lower offers more often. Their prediction was correct: Subjects 
accepted 42% of the low offers with placebo TMS stimulation, and 48% with 
actual stimulation (the small difference is significant at p<.05). Furthermore, the 
response time for rejecting offers was slower in the TMS condition, which 
suggests the DLPFC stimulation is slowing down the emotional reaction to low 
offers (even when those offers are rejected). These effects are small and come 
from only one TMS study. But this example shows that knowing what brain 
regions are activated when pondering a low offer can be used to actually “change 
preferences” and influence observed decisions.  

 
4. Oxytocin is a powerful hormone in social bonding (e.g., it surges when mothers 

breast-feed; and synthetic oxytocin—pitocin—is administered in American 
hospitals to stimulate childbirth). Direct measurement from blood samples (Zak, 
Kurzban and Matzner, 2005) suggests oxytocin is important in trust. Inspired by 
this evidence, Kosfeld et al (2005) had subjects play a trust game in which one 
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player could choose whether to invest money or keep it. If she invested, the 
money doubled in amount and the responder player (the trustee) could decide how 
much to repay and how much to keep. Half the subjects were given a synthetic 
oxytocin dose (three puffs in each nostril, then wait an hour) and half were given 
a placebo so the subjects could not tell whether they got the real pitocin or 
nothing. Kosfeld et al hypothesized that oxytocin would increase trust, and it did. 
Game theory makes predictions about structural variables that might increase 
trust—most reliably, whether the game is repeated or played once (which is does 
have a strong impact; e.g., Ho, Chong and Camerer (in press). But nothing in 
game theory would have predicted the effect of synthetic oxytocin. 

 
 
VII: Conclusion  
 
 The goal of neuroeconomics is to ground economic theory in details of how the 
brain works in decision making, strategic thinking, and exchange. One way to achieve 
this is to observe processes and constructs which are typically considered unobservable, 
to decide between many theories of behavioral anomalies like risk aversion, altruistic 
punishment, and reciprocity.  
 I have presented examples in which neuroeconomic evidence points to either  of 
three conclusions. Sometimes rational-choice processes are clearly evident in brain 
activity (LIP neurons that fire at rates almost exactly linear in expected reward). In other 
cases, the variables or differences predicted by behavioral economics models are 
evident— in β-δ discounting, ambiguity-aversion, and nonlinear probability weighting. In 
still other case, perhaps the most innovative, variables that are not a traditional focus of 
economic theory have perceptible effects, and sometimes strong effects: Patients with 
OFC damage are unusually ambiguity-neutral (which is consistent with fMRI evidence 
identifying the OFC as a locus of ambiguity-aversion processing); pupil dilation helps 
predict a player’s private information when they might be lying; stimulating DLPFC 
increases acceptance of low ultimatum offers (because earlier fMRI work showed 
DLPFC activity is correlated with acceptance); and administering oxytocin makes people 
more trusting.  
 
 For me, thinking about how the brain implements economic decisions, compared 
to thinking about choices resulting from preference and belief, is like switching from 
watching TV in black and white to watching in color— there are so many more variables 
to think about. For economic theorists, a natural way to think about these phenomena is 
that many biological state variables influence preferences; given those state-dependent 
preferences, prices and budget constraints have familiar influences. I agree with this 
view, except that we will never fully understand the nature of the state-dependence 
without facts from psychology and neuroscience. Furthermore, it is not clear whether 
subjects are aware of exogeneous influences that alter these internal states, and how the 
state-dependence works when a lot of money is on the line (arousal itself can be a big 
state variable) and when agents are highly experienced. 
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 There is much obvious future research. One path is to study the multiple-process 
approaches seriously and look for those processes directly in the brain, or as they are 
manifested in behavioral experiments.6 Another is to search for evidence of distinctions 
that are well-established in behavioral economics (such as gain-loss differences, framing 
effects, emotional foundations of inequality-aversion or social image, and so forth). A 
more unifying approach is to take the revealed-preference model seriously and see how 
far its language can be stretched to accommodate neural evidence, while making new 
predictions rather than just giving economic names to neural processes.  
 
VI:  Afterword and prologue: The “mindless” critique, and a 
reply from the past 
 
 Some economists feel that the central theory in economics—revelation of 
inherently unobservable preferences and beliefs by observed choices— is immune to 
empirical evidence from neuroeconomics. Their argument is that economics is only about 
explaining choices, and neural evidence is not choices. For example, Gul and Pesendorfer 
(2005) suggest one categorization of economics (which could be called “economics™”, 
because it assuredly legislates what economics is and is not). They write7

 
 …the requirement that economic™ theories simultaneously account for 
 economic™ data and brain imaging data places an unreasonable burden on 
 economic™ theories” (Gul-Pesendorfer, 2005) 
 
 Some of the examples in sections IV and V were judiciously chosen to address 
precisely this critique. Theories of β-δ time discounting and nonlinear π(p) probability 
weighting can account for both behavioral data from many choice experiments (and many  
field data too), and are consistent with tentative evidence of neural activity. Since such 
theories are possible, it is really an “unreasonable burden” to ask whether other theories 
can do the same? Of course, theories that spring from the fertile mind of a theorist who is 
simply inspired by psychology, but is not beholden to a large body of facts, could prove 
to be useful theories too. But theories that can explain neural facts and choices should 
have some advantage over theories which explain only choices, if they are comparably 
tractable. 
 More fundamentally, the argument against neuroeconomics (or the case for 
“mindless” economics, as their paper’s title calls it) rests mostly on an interesting hope, 
and rests a little bit on the history of economic thought. The hope is that all anomalies 

                                                 
6 For example, the Bernheim-Rangel, Fudenberg-Levine, and β-δ time preference models all predict that 
subjects who are tempted by immediate rewards will make different decisions if current choices are not 
consumed until a time sufficiently far in the future (so that the “hot self”, “short-run player”, or “present-
biased” current player’s myopic preferences are disabled). Brown, Camerer and Chua (2006) find the first 
direct evidence of such an effect in dynamic savings experiments, when thirsty subjects decide how much 
of a thirst-slaking beverage to consume. When subjects have to “order in advance”, by making choices at 
period t which are not consumed until  period t+10, they consume less and earn more overall rewards. 
Calibrating  β-δ parameters to actual decisions yields sensible estimates of δ=.90 and  β=.76-.85 (the latter 
depends on whether agents are sophisticated about their present bias, or naïve).  
7 In the passages quoted from their paper, of course, the TM superscripts do not appear.  
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produced by behavioral economics and neuroeconomics can be explained (if not 
predicted) by the enriched language of economics—preferences, beliefs, and imperfect 
information and constraint. I share that hope, but only if some imperfections and 
constraints are allowed to be located in the brain— in which case, brain evidence is 
useful for understanding those imperfections and constraints.  
 A useful focus for debate is therefore how gracefully (and predictively) 
conventional economics language can explain the effects on observed choices (and 
inferred unobservable states) of brain lesions, pupil dilation, TMS stimulation, and 
oxytocin. Any conventional accounts which absorb these effects semantically, and then 
make predictions about them, will be welcomed as interesting neuroeconomics.   
 The history of economic thought part of the “mindless” case is more clearly 
settled. As a result, there is some room left for interpretation but little room for hope. Gul 
and Pesendorfer write that “Populating economic™ models with ‘flesh-and-blood human 
beings’ was never the objective of economists™.” But Colander (2005) reminds us how 
interested classical economists were in measuring concepts like utility directly, before 
Pareto and the neoclassicals gave up.  
 Edgeworth dreamed of a “hedonimeter” that could measure utility directly; 
Ramsey fantasized about a “psychogalvanometer”; and Irving Fisher wrote extensively, 
and with a time lag due to frustration, about how utility could be measured directly. 
Edgeworth wrote: 
 
 …imagine an ideally perfect instrument, a psychophysical machine, continually 
 registering the height of pleasure experienced by an individual…From moment to 
 moment the hedonimeter varies; the delicate index now flickering with the flutter 
 of the passions, now steadied by intellectual activity, low sunk whole hours in the  
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 neighborhood of zero, or momentarily springing up towards infinity…”  
 
 Doesn’t this sound like the language of a wannabe neuroeconomist? (except that 
it’s more flowery). Now we do have tools much like those Edgeworth dreamed of. If 
Edgeworth were alive today, would he be making boxes, or recording the brain?  
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Figure 1:  Prelec (1998) probability weighting function and estimated shapes from 
various experimental studies 

 
 
Figure 1:  
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Figure 2: Differences in brain activity during choosing a strategy and expressing a belief 
about another player’s strategy (Bhatt and Camerer, 2005). Equilibrium trials (A) show 
only a difference in ventral striatum (a reward anticipation area). Out-of-equilibrium 
trials (B) show stronger activity in choosing than in belief expression (highlighting 
paracingulate and dorsolateral prefrontal (DLPFC) areas), which suggests subjects are not 
reasoning strategically about other players. 
 
 
(A)   In equilibrium   (B) Out of equilibrium 
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Figure 3: Correlation between individual-specific ambiguity-aversion parameters γ 
estimated from choicese (x-axis, higher γ is more ambiguity-aversion) and differential 
activity in right orbitofrontal cortex in ambiguous vs risky gamble evaluation (y-axis). 
Positive correlation (r=.55) indicates more ambiguity-averse people have more 
differential activity in ROFC. Extrapolating to a person with no OFC activity (y=0) gives 
an inferred ambiguity-aversion γ of .85. The actual behavioral parameter derived from 
choices of patients with OFC lesions was γ=.82.  
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