
JULY/AUGUST 2008 1089-7801/08/$25.00 © 2008 IEEE Published by the IEEE Computer Society 89

Toward Integration

Convenience Over Correctness

Steve Vinoski • Verivue

S everal of my columns over the years have
discussed the remote procedure call (RPC)
abstraction. First described in RFC 707,1

with implementation approaches and details later
provided by Andrew Birrell and Bruce Nelson,2
RPC has influenced distributed systems research
and development since the early 1980s. In that
decade, distributed systems such as Argus3 and
Emerald4 explored the possibilities for program-
ming languages themselves to be distributed,
thereby building distribution directly into any
applications written in those languages. Later in
the 1980s and into the 1990s, production RPC
systems such as the Apollo Network Computing
System (NCS), Sun RPC, and the Open Software
Foundation (OSF) Distributed Computing Envi-
ronment (DCE) provided full RPC capabilities
for enterprise developers using general-purpose
languages such as C and Pascal. That led to the
distributed objects era of the 1990s, in which
Corba and Microsoft COM developers primarily
used C++. RPC also later influenced Java remote
method invocation (RMI), Enterprise Java Beans
(EJB), XML-RPC, and SOAP.

Developers have used these technologies and
approaches to create countless applications over
the years, but the older technologies are all but
gone now, and even the newer ones are wan-
ing. For example, Corba systems are still around
mainly because long-lived telecommunications
and systems-management standards build on
top of the Corba standard, but most now view it,
rightly or wrongly, as legacy technology that’s too
complicated for new domains and applications.

Despite a highly visible standardization proc-
ess, significant media coverage, and backing
from major vendors such as Microsoft and IBM
in the first half of this decade, SOAP seems to
have fallen out of favor quite rapidly over the
past couple of years. The decline of this, the lat-
est such technology, has left developers who use

RPC-oriented systems scrambling to find the
next new approach. Some believe they’ve found
it in Facebook’s open source Thrift framework,
which is billed as a lightweight multilanguage
RPC system (see http://developers.facebook.com/
thrift/). Others might be awaiting Cisco’s open
source Etch RPC system, which is slated for ini-
tial release in July 2008.

One interesting aspect about the introduc-
tion and existence of newer RPC systems is that
we’ve already known for many years that RPC
is fundamentally flawed. Distributed systems
researchers were well aware of the problems of
network partitioning and partial failure by the
1980s. Consider, for example, that Argus included
 special transaction-oriented features specifically
designed to help programmers cope with these is-
sues. In 1994, a small team of developers led by
Jim Waldo (now a distinguished engineer at Sun
Microsystems Laboratories) published a landmark
paper simply entitled, “A Note on Distributed
Computing,” detailing the fact that local invoca-
tions and remote invocations have very different
characteristics with respect to latency, memory
access, concurrency, and partial failure.5 That
paper remains required reading for any developer
who builds distributed systems today.

As if the issues that Waldo and his col-
leagues described weren’t insidious enough,
problems with RPC don’t stop there. Why, then,
do we continue to use RPC-oriented systems
when they’re fraught with well-known and
well-understood problems?

It’s Easy
RPC-oriented systems aim to let developers use
familiar programming language constructs to
invoke remote services, passing requests and
data to them and expecting more data in re-
sponse. On the calling side, developers write
ordinary-looking function or method calls,

Toward Integration

90 www.computer.org/internet/ IEEE INTERNET COMPUTING

passing instances of data types that
the receiver expects. When execut-
ed, such a function or method call
invokes proxy infrastructure within
the calling application that turns the
call and its accompanying data into
a network message, which it then di-
rects over the network to the intend-
ed recipient. On the receiving side,
similar infrastructure converts the
network message back into a func-
tion or method call. Developers write
functions or object method imple-
mentations that carry out such re-
quests and return the desired output,
and they register them with the in-

frastructure to make them available
to remote callers. When an incoming
network message arrives, the receiv-
ing infrastructure uses an identifier
within the message to look up the
registered function or object that’s
supposed to handle the request, in-
vokes it, and then sends its results
back in a new network message. The
client infrastructure receives this
message, converts it back into pro-
gramming language data type in-
stances, and returns it to the original
caller. Because the underlying proxy
infrastructure hides all the network
operations, the call site within the
calling application looks no different
than any other ordinary local func-
tion or method call.

Unfortunately, this approach is
all about developer convenience. It’s
a classic case of everything look-
ing like a nail because all we have
is a hammer. In an object-oriented
language such as Java or C++, we
represent remote services as ob-

jects and call methods or member
functions on them. In a procedural
language such as C, we represent
remote services as functions. We
have a general-purpose imperative
programming-language hammer, so
we treat distributed computing as
just another nail to bend to fit the
programming models that such lan-
guages offer. Despite warnings from
Waldo and his colleagues and many
others, RPC-oriented systems gener-
ally represent remote services using
the same abstractions and facilities
used to represent local services, thus
letting developers stay conveniently

within the comfortable confines of
their programming languages.

Is developer convenience really
more important than all other con-
cerns in this context? Before an-
swering that, let’s examine some
other problems that RPC brings to
the picture.

Impedance Mismatch
RPC systems often employ inter-
face definition languages (IDLs) to
define service contracts. Developers
detail the functions — or, for distrib-
uted objects, the interfaces and their
methods — that remote services will
offer. Given that methods and func-
tions usually have parameters and
return values, a developer will also
use the IDL to define specialized data
types that serve as parameter types
and return types to fully specify a
service contract. In all, the effort of
defining service contracts is very
similar to that of writing functions
or objects in actual programming

languages, except that IDLs are de-
clarative only. Given RPC’s focus on
developer convenience, this similar-
ity isn’t surprising.

Unfortunately, IDLs usually aren’t
identical to programming languages.
Developers typically use them to
write services and clients in several
different programming languages,
which means their data types are
usually abstractions of those found
in actual programming languages.
Consequently, the IDL types must be
mapped to suitable types within each
supported programming language.
IDL compilers normally perform such
mapping by generating the proxy in-
frastructure code that hides the dis-
tributed invocations; the mapping
rules are often hard-coded into the
IDL compiler. Simple IDL types, such
as integers and booleans, often map
directly to programming language
counterparts, but more complex types
— multidimensional arrays, lists,
structs, discriminated unions, and
object types, for example — are much
harder to deal with. Because of the
overarching goal of developer con-
venience, each of these types must
be mapped to a programming lan-
guage type that’s as easy and natu-
ral as possible for a developer to use
within that language. For example,
an array might map to a native array
type in one language but to a class
type in another.

This mapping process is, unfortu-
nately, imperfect. An IDL has to be
rich enough to express usable remote
services, but if it’s too rich, mapping it
to different languages becomes prob-
lematic. IDL types have to be abstract
so that they can apply to multiple
languages, but this abstraction means
that they often don’t map directly or
easily into every programming lan-
guage. For example, Java developers
who have used the mapping of Corba
IDL to Java tend to view its constructs
as non-idiomatic, which isn’t too sur-
prising because Corba IDL was ini-
tially modeled mostly after C++ and

We have a general-purpose imperative
programming-language hammer, so we treat
distributed computing as just another nail to
bend to fit the programming models.

JULY/AUGUST 2008 91

Convenience Over Correctness

C. However, a feature added later to
Corba IDL — by-value objects — was
essentially taken directly from Java
and was thus quite difficult to map to
other languages. Mappings introduce
impedance mismatches between how
services are expressed and how ser-
vices and their clients are realized in
actual code. The language mapping is
a leaky abstraction; it results in code
that looks neither fully natural with-
in the programming language itself,
nor exactly like the IDL. Instead, it’s a
mixture of the two, combining com-
plexity from both, so it’s often much
less convenient than you’d hope.

Scalability Concerns
The illusion of RPC — the idea that
a distributed call can be treated the
same as a local call — ignores not only
latency and partial failure but also
the concerns that spell the difference
between a scalable networked system
with good performance capabilities
and a nonscalable one whose per-
formance characteristics are dictated
entirely by the RPC infrastructure.
For example, distributed systems
typically require intermediaries to
perform caching, filtering, monitor-
ing, logging, and handling fan-in
and fan-out scenarios. In large-scale
systems, these intermediation ser-
vices are “must haves” that ensure
that the system will operate and
perform as required. Unfortunately,
RPC-oriented calls lack the metadata
required to support intermediation
because it’s simply not a concern
for normal local invocations. Some
languages try to let developers add
that metadata to the system — Java
and C# let you attach annotations to
classes and methods, for example.
Unfortunately, such approaches just
add more complexity in trying to
maintain the illusion of convenience
by, essentially, stepping outside the
programming language proper.

Caching is critical to scaling,
for example, but nothing about an
RPC can indicate whether its re-

sults should be cacheable, and if
so, the cache validity’s duration.
Nothing about an RPC lets callers
send information along with their
requests to let servers return indi-
cations that nothing has changed
since the last time they called. Such
features are not only unnecessary
for local calls, they’re actually in-
convenient. They don’t fit the mod-
el, so RPC doesn’t offer them, even
though they’re indispensable for
large-scale systems.

Representational state transfer
(REST), on the other hand, addresses
all these concerns and more. It of-
fers clear layering and separation of
concerns, and it meets network ef-
fects head-on. For example, caching
is relatively straightforward with
RESTful HTTP because clients can
make conditional GET requests and
servers can specify cache-control
headers. HTTP also specifies which
of its verbs are idempotent, which
helps address partial failure and
its resulting indeterminacy issues.
RESTful applications are well-
equipped to deal with intermediation
and loose coupling. Many develop-
ers are thus attracted to REST, but
unsurprisingly, some try to build
programming language frameworks
to make it convenient. These frame-
works invariably come up short and
ignore important REST elements,
such as its hypermedia constraint,
because those elements don’t fit well
with typical general-purpose pro-
gramming language abstractions.

RPC has other problems in the
areas of coupling and reuse, but I al-
ready covered those in past issues.6,7

A Historical Accident?
Does developer convenience really
trump correctness, scalability, perfor-
mance, separation of concerns, exten-
sibility, and accidental complexity?
Clearly, the answer is no. We’ve known
about significant problems with RPC
for decades; yet, many (including me,
until a few years ago) continue to push

the RPC abstraction, trying to make
it fit distributed applications. What
started as a simple developer conve-
nience has evolved into an approach
that consists of layer upon layer of
leaky abstractions and bandages upon
bandages. Simply put, it’s time to put
the RPC mistake behind us.

I wish the history of distributed
computing and programming lan-
guages had been different — that the
temptation of developer convenience
hadn’t led us to view distributed
computing’s necessary complexity
as too hard, leaving us to try to re-
place it with accidental complexity
that doesn’t really work. For popular
imperative languages, using asyn-
chronous messaging, for example,
can deeply affect how you write your
application — as well it should — but
many developers choose to stay away
from it because it’s inconvenient.
Here’s what sending an asynchro-
nous message in Erlang looks like:

Pid ! Message

It says, “send the value of the variable
Message to the process identified
by the variable Pid.” It neither looks
nor acts like a local Erlang function
call. Likewise, receiving a message is
a separate action that requires call-
ing Erlang’s built-in receive func-
tion, which (among other things) lets
developers easily and clearly handle
timeouts. Given that these facilities
are part of Erlang, they’re simple, but
unlike RPC, they’re not naive.

I f history had been different, per-
haps those who built the early RPC

systems and distributed object sys-
tems would have focused on building
message queuing systems instead.
What if distributed language sys-
tems such as Argus and Emerald
had focused on making asynchro-
nous messaging available directly to
the programmer, like Erlang does?
What if, rather than developing RPC

Toward Integration

92 www.computer.org/internet/ IEEE INTERNET COMPUTING

frameworks, Apollo, Sun, and the
OSF had instead chosen to ship mes-
sage queuing frameworks? Perhaps
a whole generation of developers
would have built their distributed
applications such that their code
dealt directly with the network and
its effects rather than layering their
code over leaky RPC abstractions.

Why have there been virtually no
freely available language-independent
message-queuing systems — perhaps
until the recent implementations of
the Extensible Messaging and Pres-
ence Protocol (XMPP; www.xmpp.
org) and the Advanced Message
Queuing Protocol (AMQP; www.
amqp.org)? For decades, vendors of
message-queuing systems have cho-
sen to sell them at high prices, and
the market has unfortunately let
them do so.

Thankfully, though, things are
changing. Many still using RPC in

the enterprise are starting to re-
alize they’d be better off with ei-
ther message queuing or RESTful
HTTP, depending on the nature of
their applications. The developers of
Facebook Thrift and Cisco Etch, as
convenient as those systems might
be, would have been better off pro-
viding an XMPP- or AMQP-based
message-queuing system or relying
on RESTful HTTP; perhaps both cas-
es are instances of those not knowing
history being doomed to repeat it.

It’s time for RPC to retire. I won’t
miss it.

References
J.E. White, High-Level Framework for Net-

work-Based Resource Sharing, RFC 707,

Jan. 1976; www.ietf.org/rfc/rfc707.txt.

A.D. Birrell and B.J. Nelson, “Imple-

menting Remote Procedure Calls,” ACM

Trans. Computer Systems, vol. 2, no. 1,

1984, pp. 39–59.

1.

2.

B. Liskov, “Distributed Programming

with Argus,” Comm. ACM, vol. 31, no. 3,

1988, pp. 300–312.

A. Black et al., “Distribution and Abstract

Types in Emerald,” IEEE Trans. Software

Eng., vol. 13, no. 1, 1987, pp. 65–76.

J. Waldo et al., A Note on Distributed Com-

puting, tech. report SMLI TR-94-29, Sun

Microsystems Laboratories, 1994; www.

sunlabs.com/technical-repor ts/1994/

abstract-29.html.

S. Vinoski, “Serendipitous Reuse,” IEEE

Internet Computing, Jan./Feb. 2008, pp.

84–87.

S. Vinoski, “Demystifying RESTful Data

Coupling,” IEEE Internet Computing,

Mar./Apr. 2008, pp. 87–90.

Steve Vinoski is a member of the technical

staff at Verivue. He’s a senior member of

the IEEE and a member of the ACM. You

can read his blog at http://steve.vinoski.

net/blog/ and contact him at vinoski@

ieee.org.

3.

4.

5.

6.

7.

72%

80%

Raise Your Profile
Raise Your Income

Obtain the Certified Software Development
Professional (CSDP) from the IEEE Computer Society
and splash that accomplishment all over your resume.
Check out these recent survey results:

72% of hiring officials or those who make hiring
recommendations have a “noticeable” or “significant”
preference for a CSDP compared to an individual who
doesn’t possess the credential.

80% of managers value employees with the CSDP
credential in ways including job opportunities,
interesting work assignments, and salary.

A strong majority of
managers agree that
the CSDP credential:

“validates technical aspects
of software development
knowledge” (91%)

“demonstrates attainment
of a professional level of
competence by software
developers” (91%)

“demonstrates a professional
commitment” (96%)

E-mail CSDP@computer.org for information on how the CSDP credential can help.
boost your career. Make sure to ask about our latest promotions and offerings.

